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Motivation

Efficient estimation of the origin-destination (O-D) matrix of a particular network of interest is a crucial
requirement for transportation planning. The O-D matrix contains information on the amount of vehicles
that commute towards specific locations. The main objective is to calculate an O-D matrix based on available
traffic counts to reproduce field data as accurately as possible.

A significant challenge when using information obtained from traffic sensors, is that such sensors are subject
to considerable disruptions due to system errors, that affect the quality and reliability of the information they
deliver (Zhou, et. al., 2017). Common sensor failures include bias, drifting or complete failure that decrease
the accuracy and reliability of the sensor measurements and provide incorrect information. This affects the
quality of the estimation, hence sensor failures have to be considered explicitly in order to make efficient and
reliable O-D matrix estimation.

Contributions

We aim to estimate a static O-D matrix for a pre-specified time period T .

I We utilise a path-based CTM for O-D matrix estimation in the presence of faulty measurements, where link
densities (measurements) are associated with per path densities (state vector) and the path demand.

I We develop a novel methodology for O-D matrix estimation assuming sensor failures that (i) achieves O-D
matrix estimation and (ii) identifies faulty sensors and their fault magnitude, at the same time.

Cell Transmission model (CTM)

• Cell transmission model (CTM): is a macroscopic flow model (Daganzo, 2005) where each cell i is
characterised by: the free flow speed, vfi (km/h), the backward propagation speed wi (km/h), the maximum

flow, ϕmaxi (veh/h), the maximum density, ρmaxi (veh/km), the cell length li, the inflow, ϕ̄ini (t), outflow,

ϕ̄outi (t), and density, ρ̄i(t), of vehicles.

• Upstream connections (i−): ordinary, O, entering, E, merging, M.

• Downstream connections (i+): ordinary, O, diverging, D, or exiting, G.

•N−: the set of upstream neighbours, N+: the set of downstream neighbours.

• Demand: flow of vehicles that want to exit i at time t, Di(t) = min{vfiρ̄i(t),ϕ
max
i }.

• Supply: flow of vehicles i can receive according to its capacity, Si(t) = min{ϕmaxi ,wi[ρ
max
i − ρ̄i(t)]}.

Objective: estimate path demand λ = [λ1, . . . , λQ]
T in the presence of faulty sensors and

hence estimate the O-D matrix. The demand of each O-D pair w ∈W, dw(t), is related to
the path demand pattern, λp(t) on each path p ∈ Sw and time t = 1, . . . ,K, by∑

p∈Sw
λp(t) = dw(t), ∀w ∈W. (1)

Path-based CTM

• Path-based CTM (Ukkusuri, et al., 2012): an extension of the CTM that allows us to keep track of
path-based densities and path-based flows given by
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where ϕini,p(t), ϕ
out
i,p (t) the per path inflow and outflow.

• Pi ⊆ P (P = ∪i∈RPi) the set of all paths passing through cell i.

• up(t) the vehicles entering the network at t through the entering connections, up(t)|λp(t) ∼ Pois[λp(t)].

We assume λp(t) remains fixed for all t = 1, . . . ,K and hence we drop subscript t

State-space model

Assume a mathematical description of the physical system with state vector xt and inputs ut:

xt+1 = Atxt + Btut + εt,

yt+1 = Ht+1xt+1 +ωt+1. (3)

• x0: the initial conditions of the stochastic process.

• the (LQ+ L)-state vector xt = [ρ(t)T, ρ̄(t)T]T.

• ρ(t) = [ρ1,1(t), ρ1,2(t), . . . , ρ1,Q(t), . . . , ρL,1(t), ρL,2(t), . . . , ρL,Q(t)]
T and ρ̄(t) = [ρ̄1(t), . . . , ρ̄L(t)]

T.

• the C-vector of observations yt = [ρ̄b1
(t), . . . , ρ̄bC(t)]

T, b1, . . . ,bC ∈ C.

• the Q input vector ut, denotes the inflow of cell i at time t, with i− ∈ E and p ∈ Pi.

•At he evolution of the unknown states as time progresses.

•Ht the matrix of explanatory variables.

These matrices do not vary with time as a result of the path-based CTM under free-flow conditions, hence
drop subscript t.

• Independent Gaussian errors εt ∼ N(0,Σεt ) and ωt ∼ N(0,Σωt ).

• Σεt and Σωt model and measurement error matrices, respectively.

We can re-write Equations (3) as
CX = AX+ Bu+ b? + ε,

Y = HX+ω, t = 1, . . . ,K. (4)

Solution Approach

The inputs, u, as well as the state vector, X, are unknown and hence we define w = [XT, uT]T hence

C?w +b? + ε = 0,

Y = H?w +ω, (5)

C? = [A− C, 0(LQ+L)K×m] + [0(LQ+L)K×(LQ+L)K,B]

H? = [H, 0C×Q].

Path-based CTM Static O-D matrix estimation
We formulate the path-based CTM static O-D matrix estimation (pCTM-O-D) in an optimisation context:

min
w

Ψ(w)

s.t. w > 0, (6)

where the objective function to be minimised is:

Ψ(w) = 1
2

[
||Y −Hw||2

[Σω]−1 + ||C?w + b||2
[Σε]−1

]
, (7)

where Σω = blkdiag(Σω1 , . . . ,ΣωK ) and Σε = blkdiag(Σε1 , . . . ,ΣεK).

Fault-Tolerant Path-based CTM O-D matrix estimation
When faulty sensors are present in the network under study, a more appropriate model to describe the
evolution of traffic density of the path-based CTM is

xt+1 = Atxt + Btut + εt,

yt+1 = Ht+1xt+1 +ωt+1 + ot, (8)

with ot = [o1,t, . . . ,oC,t]
T the sensor fault residuals , with oi,t having a zero value if sensor i ∈ C is not

faulty and non-zero value if sensor i ∈ C is faulty at time t (Timotheou, et. al., 2015).

Following Timotheou, et. al. (2015) the maximum sensor fault-residuals yj(t), j = 1, . . . ,C are

yj(t) = max
t=1,...,T

{|oj,t|}, (9)

relating a value of sensor j equal to the maximum residual oj,t. This results in the below convex formulation:

min
w,o

Ψ(w,O) + µ
∑
j∈C yj

s.t. oj,t 6 yj(t), t = 1, . . . ,K, j ∈ C

−oj,t 6 yj(t), t = 1, . . . ,K, j ∈ C, (10)

with O = [o1, . . . , oK]
T, referred to as pCTM-O-D-F.

Simulation Results
I Consider the following arterial network which consists of L = 15 directed measured links (cells), Q = 12

pre-specified paths and W = 10 O-D pairs.

I Traffic enters the network from the upstream boundary of cells 1, 2 and 3 and exits from the downstream
boundary of cells 9, 12, 13 and 15.

I Collect measurements when there are (i) no faulty sensors in the network, nf = 0; (ii) three faulty sensors in
the network, nf = 3.

I Estimate λ for both cases using (a) pCTM-O-D and (b) pCTM-O-D-F.
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I (a) shows that the estimated fault residual parameter values are small around zero, suggesting that no faulty
sensors have been detected.

I (b) shows the estimated maximum fault residual parameter values for each link which are again low and
close to zero also supporting that no faulty measurements have been identified.

I (c) shows that the proposed methodology offers effective fault detection, isolation and identification of the
three problematic sensors, through the fault residual values.

I (d) shows the estimated maximum fault residual parameter values for each link which support the faults at
the particular sensors.

Formulation SEλ
Sensor Errors nf = 0 nf = 3

Poisson variables u ∼ Pois(λ)
pCTM-O-D 73.97 684.03

pCTM-O-D-F 69.62 80.11
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